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Abstract

The Laplace-Beltrami operator for graphs
has been been widely used in many machine
learning issues, such as spectral clustering
and transductive inference. Functions on the
nodes of a graph with vanishing Laplacian
are called harmonic functions. In differen-
tial geometry, the Laplace-de Rham operator
generalizes the Laplace-Beltrami operator. It
is a differential operator on the exterior al-
gebra of a differentiable manifold, and it is
equivalent to the Laplace-Beltrami operator
when acting on a scalar function. In this pa-
per, we develop a discrete analogue of the
Laplace-de Rham operator, which naturally
generalizes the discrete Laplace-Beltrami op-
erator. The discrete Laplace-de Rham op-
erator can then be used to define harmonic
functions on arbitrary paths in a graph,
in particular, functions on edges. Conse-
quently, we build discrete regularization us-
ing the discrete Laplace-de Rham operator,
and validate it on real-world web categoriza-
tion tasks.

1. Introduction

In many machine learning issues, we are only con-
cerned with a finite set of objects rather than a con-
tinuous space, such as clustering and transductive in-
ference. Without any assumption on the relationships
among the given objects, we can cluster or classify
them in an arbitrary way. Typically, it is assumed
that there is a graph defined on the object set (Fig-

Appearing in the 6 th International Workshop on Mining
and Learning with Graphs, Helsinki, Finland, 2008.

ure 1). The graph can be undirected or directed. For
instance, in image segmentation, an image can be re-
garded as an undirected graph, in which each vertex
represents a pixel, and each edge represents the simi-
larity between two pixels (Shi & Malik, 2000); and, in
web categorization, a set of web pages can be regarded
as a directed graph (Zhou et al., 2005), in which each
each vertex represents a web page, and each edge rep-
resents a hyperlink between two web pages.

There have been many graph based machine learning
approaches, in which graph Laplacians play important
roles, although the definitions of graph Laplacians vary
subtly across literature. In 1970s, Fielder began to in-
vestigate algebraic connectivity of graphs via the sec-
ond smallest eigenvector of a discrete analogue of the
Laplacian (Fielder, 1973), which is now widely called
the unnormalized graph Laplacian. Fielder’s work pro-
vided the theoretical justification for the use of graph
Laplacians in partitioning, in particular, the ratio cut
(Hagen & Kahng, 1992), which divides the vertices of
a graph into two subsets such that the number of ver-
tices in each subset is as equal as possible, and the
number of the edges which are cut is as small as possi-
ble. If we ask the volume of each subset instead of the
number of vertices to be as equal as possible, then we
obtain the normalized cut (Shi & Malik, 2000), and the
normalized graph Laplacian takes the role of its unnor-
malized counterpart in partitioning. The normalized
cut has been extended to directed graphs (Zhou et al.,
2005) and hyergraphs (Zhou et al., 2007). For clas-
sification issues, graph Laplacians have been used in
kernel design (Chapelle et al., 2003; Smola & Kondor,
2003; Ando & Zhang, 2007) and in transductive in-
ference (Belkin & Niyogi, 2004; Joachims, 2003; Zhu
et al., 2003; Zhou et al., 2004). The convergence prop-
erties of graph Laplacians are addressed in (Hein et al.,
2005) and the references therein.

Graph Laplacians so far are restricted to a discrete
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Figure 1. Manifold and graph. A graph can be considered as a discrete approximation to a manifold; on the other hand,
a manifold can be considered as a continuous approximation to a graph. In this sense, it is hard to say which one is more
fundamental.

analogue of the Laplace-Beltrami operator on Rieman-
nian manifolds however. In differential geometry, the
Laplace-de Rham operator generalizes the Laplace-
Beltrami operator. It is a differential operator on the
exterior algebra of a differentiable manifold, and it
is equivalent to the Laplace-Beltrami operator when
acting on a scalar function. Hence, we consider de-
veloping a discrete analogue of the Laplace-de Rham
operator such that it can naturally generalize the dis-
crete Laplace-Beltrami operator. Then the discrete
Laplace-de Rham operator can be used to define har-
monic functions on arbitrary paths in a graph, in par-
ticular, functions on edges.

The present work is a further development of the
discrete analysis over graphs in (Zhou et al., 2005),
where the discrete analogues of differential operators
including the divergence, the Laplacian and the p-
Laplacian have been constructed in a coordinate-free
fashion. However, the discrete analogue of the gradient
in (Zhou et al., 2005) is coordinate-dependent. This
observation motivates us to construct an intrinsic def-
inition of the discrete gradient instead, and a discrete
analogue of the Laplace-de Rham operator is conse-
quently obtained. The improvement over the work in
(Zhou et al., 2005) is based on noncommutative ge-
ometry, discrete field theories and quantum mechan-
ics (Connes, 1994; Dimakis & Müller-Hoissen, 1992;
Noyes, 1996). It is worth mentioning that there has
been much effort devoted to developing discrete exte-
rior calculus over triangle meshes or simplicial com-
plexes (Forman, 1999; Mercat, 2001; Leok, 2004) in-
stead of over graphs, and it has been applied to com-

puter graphics (Fisher et al., 2007) and computational
mechanics (Leok, 2004), where the manifold of interest
is discretized into simplicial complexes. For developing
discrete differential operators over graphs, however, we
have to develop new discretizing techniques.

The paper is organized as follows. In Section 2, we
present some basic notions in differential geometry
such that the reader who is not familiar with differ-
ential geometry can find the continuous roots of the
definitions of the discrete differential operators in the
later sections. In Section 3, we introduce discrete ana-
logues of the differential, the codifferential, and the
Laplace-de Rham operator in a coordinate-free fash-
ion almost by simply copying the definitions of their
continuous counterparts. In Section 4, the above dis-
crete differential operators are computed with respect
to a specific chosen basis. In other words, they were ex-
pressed in a coordinate-dependent fashion. In Section
5, we propose an optimization framework for regular-
izing the functions on arbitrary paths of a graph. This
method is validated on a task of web spam detection in
Section 6. A web site is judged to be spam or not via
checking the quality of its links. Finally, we conclude
the paper in Section 7.

2. Laplace-de Rham Operator on
Manifolds

We review some related notions in differential geom-
etry. For a comprehensive introduction to differential
geometry, we refer the reader to (Jost, 2002).
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Let M be a n-dimensional smooth manifold (Figure
1). For any p ∈M, two curves γ1 :]− ε1, ε1[→M and
γ2 :] − ε2, ε2[→M through p (i.e. γ1(0) = γ2(0) = p)
are equivalent iff there is some chart (U,ϕ) at p so
that (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0). A tangent vector at
p is any equivalent class of smooth curves though p
modulo the equivalence. The set of all tangent vectors
at p is denoted by TpM. It is obvious that TpM is a
vector space. The dual of TpM is denoted by T ∗pM.
It is called the cotangent space, and its elements are
called cotangent vectors.

Given a vector space V, the exterior or Grassmann
algebra of V over a field K is an associative algebra
which contains V as a subspace. Its multiplication is
known as the wedge product denoted by ∧. The wedge
product is associative and bilinear, and it satisfies that
v ∧ v = 0 for all v ∈ V. The property implies that
u∧v = −v∧u for all u, v ∈ V. The r-th exterior power
of V is denoted by ∧rV. In particular, ∧0V = R and
∧1V = V. Let {ei} be a basis of V. Then

{ei1 ∧ · · · ∧ eir , 1 ≤ i1 < · · · < ir ≤ n}
forms a basis for ∧rV. Given an element ω ∈ ∧rV, its
degree is denoted by deg ω = r. The direct sum

∧(V ) =
⊕

r≥0

∧rV

forms a graded associative algebra, which is closed
with respect to the wedge product. This algebra is
called the exterior algebra of V.

The disjoint union of the tangent spaces TpM is called
the tangent bundle denoted by TM. A vector field is
a section of TM. The dual bundle of the tangent bun-
dle is called the cotangent bundle denoted by T ∗M.
A 1-form is a section of T ∗M, while a differential r-
form is a section of ∧rT ∗M. A 0-form means a smooth
function on M. Let A denote the algebra of smooth
functions on M, and let Ωr(A) denote the A-bimodule
of differential r-forms. Let

Ω(A) =
⊕

r≥0

Ωr(A)

denote the vector space of all differential forms, where
Ω0(A) = A. The exterior derivative is a differential
operator d : Ωr(A) → Ωr+1(A), that can be defined as
the unique linear mapping satisfying the Leibniz rule

d(ω ∧ η) = (dω) ∧ η + (−1)deg ω(ω ∧ dη),

and
d(dω) = 0,

for ω, η ∈ Ω(A), and (df)(ξ) = ξf, where ξ is a vector
field, and f ∈ A.

Suppose V to be an oriented inner product space, and
{ei} an oriented orthonormal basis. For 0 ≤ k ≤ n,
the Hodge star operator on V is a linear operator on
∧(V ) with the property

∗(e1 ∧2 ∧ · · · ∧ ek) = ek+1 ∧k+2 ∧ · · · ∧ en.

This operator induces an inner product on ∧rV. Given
ω, η ∈ ∧rV, one has

ω ∧ ∗η = (ω, η)σ,

where σ is the normalized volume form. One can re-
peat the construction above for each tangent space
of an oriented Riemannian manifold such that, given
ζ, η ∈ Ωr(A),

(ω, η) =
∫

M
ω ∧ ∗η.

The codifferential δ : Ωr(A) → Ωr−1(A) is the adjoint
of the exterior derivative, that is,

(ω, dη) = (δω, η),

which is actually the generalized Stokes’ theorem. The
Laplace-de Rham operator ∆ : Ωr(A) → Ωr(A) is
given by

∆ = δd + dδ.

It lies at the heart of Hodge theory. The elements in
the space

Hr
∆(A) = {ω ∈ Ωr(A)|∆ω = 0}

are called harmonic forms. In particular, the elements
in the space H0

∆(A) are called harmonic functions.
The dimension of the space Hr

∆(A) is called the r-th
Betti number.

3. Laplace-de Rham Operator on
Graphs: Coordinate-Free

Let M be a finite set. An associative algebra A can
be formed over all real-valued functions on M via in-
troducing a bilinear multiplication

(fg)(i) = f(i)g(i)

for all i ∈M. It is obvious that the constant function
I(i) = 1 for all i ∈M is an identity element in A.

We can extend A to a differential graded algebra

Ω(A) =
⊕

r≥0

Ωr(A),

where Ω0(A) = A, and Ωr(A) consists of A-bimodules.
Given an element ω ∈ Ωr(A), its degree is denoted by
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deg ω = r. The differential graded algebra is equipped
with a linear map d : Ωr(A) → Ωr+1(A) which satisfies
the Leibniz rule

d(ωη) = (dω)η + (−1)deg ω(ωdη), (1)

and

d(dω) = 0, (2)

for ω, η ∈ Ω(A). By following the terminologies in
differential geometry, the map d is called the exterior
derivative or differential, and the elements in Ωr(A)
are called r-forms.

Assume an inner product defined on Ω(A). The cod-
ifferential δ : Ωr(A) → Ωr−1(A) is the adjoint of the
exterior derivative with respect to the inner product,
that is

(ω, dη) = (δω, η), (3)

where ω ∈ Ωr(A), η ∈ Ωr−1(A). Moreover, we define
δf = 0 for any f ∈ A. It is obvious that δ(δω) = 0 for
any ω ∈ Ω(A).

As in the continuous case, now we can construct a
discrete analogue of Laplace-de Rham operator ∆ :
Ωr(A) → Ωr(A) as

∆ = dδ + δd. (4)

It can be verified that

(∆ω, η) = (ω, ∆η)

and

(∆ω, ω) ≥ 0.

The spaces of harmonic forms are defined by

Hr
∆(A) = {ω ∈ Ωr(A)|∆ω = 0}.

In particular, the elements in the space H0
∆(A) are

called harmonic functions. The r-th Betti number is
then given by

br = dimHr
∆(A).

4. Laplace-de Rham Operator on
Graphs: Coordinate-Dependent

Using the Kronecker delta, we define a set of functions
ei ∈ A as ei(j) = δij for any i, j ∈ M. Obviously, the
function set {ei} forms a basis of A. Then each f ∈ A
can be expressed as f =

∑
i f(i)ei. In particular, I =∑

i ei.

4.1. Discrete Differential

Let eij = eidej , i 6= j. It can be shown that {eij}i 6=j

is a basis of Ω1(A). That means each ω ∈ Ω1(A) can
be written as

ω =
∑

i 6=j

ωijeij .

Note that eii has not been defined. We may set eii = 0.
Then

ω =
∑

i,j

ωijeij .

Through a straightforward computation based on
Equations (1) and (2), we can obtain

df =
∑

i,j

[f(j)− f(i)]eij (5)

Since eij is a basis of Ω1(A), a function f ∈ Ω0(A) is
constant iff df = 0. Generally, define

ei1,...,ir
= ei1i2ei2i3 · · · eir−1ir.

Then {ei1...ir} forms a basis of Ωr−1(A). Hence, any
ω ∈ Ωr−1(A) can be written as

ω =
∑

i1,··· ,ir

ωi1···irei1...ir .

Similarly, we have

dω =
∑

i1,...,ir+1

ei1...ir+1

r+1∑

k=1

(−1)k+1ωi1···̂ik···ir+1. (6)

4.2. Discrete Codifferential

Let us associate the finite set M with an ergodic
Markov chain. Denote by pij for all i, j ∈ M the
transition probabilities in which pii = 0, and denote
by πi for all i ∈ M the stationary probabilities. An
inner product on Ω0(A) can be defined by

(ei, ej) = 0, i 6= j; and (ei, ei) = πi.

Let cij = πipij . An inner product on Ω1(A) can be
defined by

(eij , ekl) = 0, i 6= j, k 6= l; and (eij , eij) = cij .

For any ω ∈ Ω1(A), with respect to the above inner
product, the codifferential δ defined in Equation (3) is
computed as

δω =
∑

i

ei

∑

j

cjiωji − cijωij

πi
. (7)

Generally, let

ci1···ir = πi1pi1i2 · · · pir−1ir
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for all r > 1. An inner product on Ωr−1(A) is defined
by

(ei1···ir , ej1···jr ) = δi1j1 · · · δirjrci1···ir .

Then, for any ω ∈ Ωr(A), we have

δω =
∑

i1,··· ,ir

ei1···ir

∑

j

r∑

k=1

1
ci1···ir

·(−1)k+1ci1···ik−1jik···ir
ωi1···ik−1jik···ir

(8)

4.3. Discrete Laplace-de Rham Operator

By substituting Equations (5) and (7) into Equation
(4), the discrete Laplace-de Rham operator acts on
f ∈ Ω0(A) as

∆f =
∑

i

[
2f(i)−

∑

j

cji + cij

πi
f(j)

]
ei, (9)

and it acts on ω ∈ Ω1(A) as

∆ω =
∑

i,j

2ωijeij

+
∑

i,j

1
cij

∑

k

cijk(ωjk − ωik)eij

−
∑

i,j

1
cij

∑

k

cikj(ωkj − ωij + ωik)eij

+
∑

i,j

1
cij

∑

k

ckij(ωki − ωkj)eij

+
∑

i,j

( ∑

k

ckjωkj − cjkωjk

πj

)
eij

−
∑

i,j

( ∑

k

ckiωki − cikωik

πi

)
eij . (10)

For the sake of simplicity, we omit the discussion of
the coordinate-dependent representation of the dis-
crete Laplace-de Rham operator acting on Ωr(A) with
r > 1.

Given a finite set M equipped with a function w :
M×M → R which is nonnegative and symmetric,
a Markov chain over this finite set can be naturally
defined by

pij =
w(i, j)

di
,

where
di =

∑

j

w(i, j),

and it has a closed-form stationary distribution

πi =
di∑
j dj

.

Equation (9) with respect to this particular Markov
chain will be

∆f = 2
∑

i

[
f(i)−

∑

j

w(i, j)
di

f(j)
]
ei.

The matrix form of the above expression has been
widely used as the definition of Laplacian for undi-
rected graphs (Chung et al., 2000) up to factor 2. The
strong pointwise consistency of this undirected graph
Laplacian to the weighted Laplace-Beltrami operator
(Chung et al., 2000) is established in (Hein et al.,
2005).

5. High-Order Regularization

We use the discrete analogue of the Laplace-de Rham
operator to regularize the functions on paths of a graph
or forms. For the sake of simplicity, the discussion is
restricted to functions on edges or 1-forms.

Given a directed graph G = (M, E) with vertex set M
and edge set E , the edges in E belong to two different
classes denote by a discrete set Y = {−1, 1}. For in-
stance, in a social network, the relationships between
two individuals can be roughly classified as trust and
not trust. We assume that the labels of the edges in
a subset of E have been given. The task is to predict
the labels of the remaining unclassified edges (Figure
2). Let ω be a 1-form in Ω1(A), which is used to clas-
sify the edges. Let η be another 1-form, which encodes
the label information that is provided in advance. We
suppose there is an ergodic Markov chain associated
with this directed graph. The Markov chain is used
to form the inner product in Ω(A). The unclassified
edges can then be classified via solving the optimiza-
tion problem

argmin
ω∈Ω1(A)

{
(ω, ∆ω) + C‖ω − η‖2} , (11)

where C > 0 is the regularization parameter. The first
term in the objective function requires the solution to
be as as harmonic as possible while the second term
requires the solution to be as close to the original form
as possible. A trade-off between these two terms is
made via the regularization parameter.

Let us take the standard basis {ei}. From Equation
(10), we have

∆eij =
(

2 +
∑

k

cikj

cij

)
eij

−
∑

k

(
cikj + cijk

cik
− cij

πi

)
eik

−
∑

k

(
cikj + ckij

ckj
− cij

πj

)
ekj
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Figure 2. Classification for the edges of a directed graph. Left panel: a directed graph with some edges are labeled; right
panel: the adjacency matrix of the directed graph. This kind of classification issue can be solved through the discrete
Laplace-de Rham operator based high-order regularization.

This can be used to represent the discrete Laplace-de
Rham operator ∆ as a |E| × |E| matrix with respect
to the standard basis. Obviously, this matrix is not
symmetric.

6. Experiments

We address the spam detection issue using the high-
order regularization on graph. In most web search en-
gines, the more hyperlinks that point to a web page,
the more important the web page. Thus, web spam-
mers will try to create a large number of links to their
web pages by creating lots of their own pages and
web sites and linking them all together to fool the
web search engines in which the hyperlink structure
is considered for ranking web pages. Our experiments
are based on the spam data set webspam-uk2006-1.2
(Castillo et al., 2006). The hosts in this data set have
been manually labeled as normal, borderline, spam,
and cannot judge.

A directed graph over hosts is constructed as follows.
Each host can be regarded a collection of web pages.
Given two hosts, if there exists at least one hyperlink
from the web pages on one host to the web pages on
the other host, then we say that there is a directed link
from one to the other. We take a strongly connected
component of the host graph for a case study. The
subgraph contains 556 hosts and 9, 573 links, and 183
hosts are spam.

We compare two approaches respectively based on
the zero-order and the first-order discrete Laplace-de
Rham operators. As discussed in Section 4.3, the zero-
order discrete Laplace-de Rham operator is just the
discrete Laplace-Beltrami operator, and it has shown

good performance on web categorization (Zhou et al.,
2005). For applying the discrete higher-order Laplace-
Beltrami operator based regularization to the same
task, however, the situation becomes somewhat tricky.
In the spam data set, what we know is the labels of
hosts rather than the labels of links. So we have to
consider assigning labels to hyperlinks with respect the
labels of hosts. In our experiments, if a link points to
a spam host, then this link will be regarded as spam;
otherwise, it will be regarded as normal. Consequently,
we obtain the labels for a subset of links according to
the labels of a subset of hosts which are provided as
training examples. The labels of the subset of links
are then used in the high-order regularization, and the
solution is a 1-form defined on the whole set of links.
The value of the 1-form on each link can be considered
as the measure of its quality. For classifying a host to
be spam or normal, we simply sum those values on
both its inlinks and outlinks, and the sum is corre-
spondingly considered as the measure of the quality of
the host. In other words, if the inlinks and the out-
links of a host are of low quality, it is likely that the
host is spam.

Spam detection is an unbalanced classification issue.
In the chosen subgraph, 32.91% hosts are labeled as
spam. Hence, we consider measuring algorithmic per-
formances via precision and recall, rather than classi-
fication accuracy. Precision is the ratio of the number
of retrieved and relevant documents to the number of
documents retrieved, and recall is the proportion of
the number of relevant documents that are retrieved
to the total number of the relevant documents avail-
able. In addition, classifying a normal host into spam
is much worse than classifying a spam host into nor-
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Table 1. Precisions for the two classification approaches respectively based on the zero-order and the first-order discrete
Laplace-de Rham operators. Recall is fixed at 50%. The zero-order discrete Laplace-de Rham operator is just the discrete
Laplace-Beltrami operator. The numbers in the first line show the proportion of labeled instances. Each precision result
is averaged over 20 trials.

Labeled instances (%) 10 15 20 25
Laplace-de Rham (r = 0) 86.69± 2.35 94.66± 0.95 98.89± 0.47 99.99± 0.00
Laplace-de Rham (r = 1) 71.09± 2.84 73.73± 1.47 81.41± 1.43 82.82± 1.25

mal. That means precision is more crucial than recall.
Consequently, comparing precision with low recall is
more significant than comparing precision with high
recall.

The experimental results are summarized in Table
1. The regularization approach based on the zero-
order Laplace-de Rham operator performs better than
the regularization approach based on the first-order
Laplace-de Rham operator in this classification task.
We think the reason is that the the first-order approach
has to classify the vertices in an indirect way. In other
tasks like classifying the pairwise relationships among
the individuals of a social networks, the first-order ap-
proach can be expected to perform better than the
zero-order approach. Unfortunately, so far, we have
not seen such a benchmark publicly available.

7. Conclusion and Discussion

We proposed a discrete analogue of the Laplace-de
Rham operator. The discrete analogue acts on the
functions on the paths of any length in a directed
graph. When acting on the functions on vertices, it
naturally reduces to the usual graph Laplacian, a dis-
crete analogue of the Laplace-Beltrami operator. The
discrete Laplace-de Rham operator was used to de-
velop high-order regularization on graphs. The basic
methodology of the present work is to consider the al-
gebra of the functions on the vertices of a graph. We
do not attempt directly manipulating the combinato-
rial structure of a graph. This kind of methodology
is actually pretty common is modern mathematics. It
turns out that the geometrical structure on a space is
always completely expressible at the language of the
associated (commutative) algebra of the appropriate
complex-valued functions on the space.

There are a number of interesting further directions
suggested by this work. We will restrict ourselves to
three such directions. First, we want to develop more
discrete differential operators, and then use them to
construct a general regularization theory for graphs.
Although the graph Laplacian has been successively
applied to many machine learning issues, so far we

have no seen any reason of that the graph Laplacian is
the only choice in forming a graph regularization. Sec-
ond, it is worth exploring the convergence properties
of the discrete Laplace-de Rham operator when the
elements of a finite set are sampled from a manifold.
This study will be greatly helpful in identifying which
definition is more reasonable in the sense of conver-
gence once we have other choices of defining a discrete
analogue. Perhaps we would be able to obtain a uni-
fied approach of showing the convergence of all of those
discrete analogues such that a bridge from discrete to
continuous mathematics would be built. Third, we are
interested in applying this new graph-based method
to a variety of real-world problems where the data are
generally represented as graphs.
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Fisher, M., Schröder, P., Desbrun, M., & Hoppe,
H. (2007). Design of tangent vector fields. Proc.
34th International ACM SIGGRAPH Conference on
Computer Graphics and Interactive Techniques.

Forman, R. (1999). Combinatorial differential topol-
ogy and geometry. New Perspectives in Algebraic
Combinatorics, 38, 177–206.

Hagen, L., & Kahng, A. (1992). New spectral meth-
ods for ratio cut partitioning and clustering. IEEE.
Trans. on Computed Aided Desgin, 11, 1074–1085.

Hein, M., Audibert, J., & von Luxburg, U. (2005).
From graphs to manifolds - weak and strong point-
wise consistency of graph Laplacians. Proc. 18th
Annual Conference on Learning Theory (pp. 470–
485).

Joachims, T. (2003). Transductive learning via spec-
tral graph partitioning. Proc. 20th International
Conference on Machine Learning.

Jost, J. (2002). Riemannian geometry and geometric
analysis. Berlin-Heidelberg: Springer-Verlag. Third
edition.

Leok, M. (2004). Foundations of computational geo-
metric mechanics. Doctoral dissertation, California
Institute of Technology.

Mercat, C. (2001). Discrete Riemann surfaces and
the Ising model. Communications in Mathematical
Physics, 218, 177–216.

Noyes, H. (1996). Some thoughts on discrete physics
and the reconstruction of quantum mechanics (Tech-
nical Report SLAC-PUB-7145). Stanford Linear Ac-
celerator Center.

Shi, J., & Malik, J. (2000). Normalized cuts and im-
age segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22, 888–905.

Smola, A., & Kondor, R. (2003). Kernels and regular-
ization on graphs. Proc. 16th Annual Conference on
Learning Theory.

Zhou, D., Bousquet, O., Lal, T., Weston, J., &
Schölkopf, B. (2004). Learning with local and global
consistency. Advances in Neural Information Pro-
cessing Systems 16. MIT Press, Cambridge, MA.

Zhou, D., Huang, J., & Schölkopf, B. (2005). Learn-
ing from labeled and unlabeled data on a directed
graph. Proc. 22th International Conference on Ma-
chine Learning.

Zhou, D., Huang, J., & Schölkopf, B. (2007). Learn-
ing with hypergraphs: Clustering, classification, and
embedding. Advances in Neural Information Pro-
cessing Systems. MIT Press, Cambridge, MA.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-
supervised learning using Gaussian fields and har-
monic functions. Proc. 20th International Confer-
ence on Machine Learning.


