
Query Suggestion Using Hitting Time

Qiaozhu Mei ∗

University of Illinois at
Urbana-Champaign

qmei2@uiuc.edu

Dengyong Zhou
Microsoft Research

Redmond,WA 98052
dengyong.zhou@microsoft.com

Kenneth Church
Microsoft Research

Redmond,WA 98052
church@microsoft.com

ABSTRACT
Generating alternative queries, also known as query sugges-
tion, has long been proved useful to help a user explore and
express his information need. In many scenarios, such sug-
gestions can be generated from a large scale graph of queries
and other accessory information, such as the clickthrough.
However, how to generate suggestions while ensuring their
semantic consistency with the original query remains a chal-
lenging problem.

In this work, we propose a novel query suggestion algo-
rithm based on ranking queries with the hitting time on a
large scale bipartite graph. Without involvement of twisted
heuristics or heavy tuning of parameters, this method clearly
captures the semantic consistency between the suggested
query and the original query. Empirical experiments on a
large scale query log of a commercial search engine and a
scientific literature collection show that hitting time is effec-
tive to generate semantically consistent query suggestions.
The proposed algorithm and its variations can successfully
boost long tail queries, accommodating personalized query
suggestion, as well as finding related authors in research.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Text Mining

General Terms: Algorithms

Keywords: Hitting time, bipartite graph, query sugges-
tion, personalized query suggestion

1. INTRODUCTION
The explosive growth of web information has not only

created a crucial challenge for search engine companies to
handle large scale data, but also increased the difficulty for
a user to manage his information need. It has become in-
creasingly difficult for a user to compose a succinct and pre-
cise query to present his search need. Instead of pushing
this burden to the users, it is common practice for a search
engine to provide some types of query suggestions.

∗ This work was done when the first author was on a
summer internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

When a user types a query “msg” to the search engines,
he will be provided with quite a few alternative potential
queries. For example, he will be suggested “msg chinese
food,” “msg health,” and “other names for msg” by Google,
and “msg error,” “msg network,” and “msg seating chart”
by Yahoo 1. There are also other query suggestion mecha-
nisms which could automatically complete a query [7], and
automatically correct spelling mistakes [10].

Such query suggestion mechanisms are usually developed
based on morphological information of queries, or cooccur-
rence of one query word with other queries (e.g., in the same
query, or in the same working session). Although such query
suggestions are proved useful in different ways, there is usu-
ally no guarantee that the suggested queries convey close
semantic information with the original query. Indeed, it is
usually annoying for a researcher who searches for “Chris
Burges” but is suggested with “chris burgess 2” or “Chris
Burge Ministries 3.” Similarly, it is not very helpful to
suggest “KDD” with “KBB”, “kddi,” “Ntt 4,” and “Harry
Shum” with “Harry Potter 5.” People searching for “larry
page” maybe interested in “sergey brin” but not “yellow
page.” A good query suggestion system should consider a
handful of features, but in most cases it is important to en-
sure that the semantics of the suggested query do not drift
too much from the original one.

The problem becomes more challenging when personaliza-
tion is taking into consideration. Some users will issue the
query “msg” to search for the sports center in New York and
others use it to search the food additive. “msr” could mean
“microsoft research,” but also “mountain safety research, ”
or even “mortgage servicing rights.” Without the constraint
of semantics, a general suggestion to such ambiguous queries
would easily be off the track.

Another big challenge and opportunity for the current
query suggestion systems lies in the suggestion of infrequent
queries. It has been a well known theory in business that a
company could “sell less of more” by boosting the long tail
of the power law distribution [2]. Netflix spends millions to
look for an effective way to suggest hard-to-find movies. The
same question lies in search engine business, especially in ad-
vertising where customers bid for query terms. Frequently
clicked queries cost more and long tail queries cost less. If a
well designed query suggestion system could route the traf-

1All real examples are collected on Feb. 25th, 2008.
2http://search.yahoo.com/search?p=chris+burges
3http://search.live.com/results.aspx?q=chris+burges
4http://search.live.com/results.aspx?q=KDD
5http://search.live.com/results.aspx?q=harry+shum

fic and boost the clickthrough of long tail queries, there is a
huge opportunity to maximize the benefits for both a search
engine company and customers of its advertising system.

Is there a principled way to suggest semantically similar
queries while also boosting long tail queries? Can such a
method also provide a natural solution to personalization?
It is challenging because “semantics” is hard to define and
both long tail queries and personalization usually suffer from
data sparsity.

In this paper, we propose a unified approach to query
suggestion, by computing the hitting time on a large scale
bipartite graph of queries and clickthrough. Despite its sim-
plicity, this novel approach introduces quite a few benefits
to query suggestion: 1) the suggestions generated with the
proposed algorithm are semantically similar to the original
query; 2) the suggestions generated do not have to occur
with the original query; 3) this approach boosts the long tail
queries as suggestions; and 4) this model provides a natural
treatment for personalized query suggestion. Empirical ex-
periments on a large scale query log of a commercial search
engine, as well as a public available scientific bibliography
dataset show that our proposed algorithm is effective for
semantically coherent query suggestion, which provides a
potential new framework, or an important and novel feature
for building a real query suggestion system. The approach
of using hitting time is quite general, which could provide
potential solutions to many other search related problems
other than query suggestion. We will discuss these possibil-
ities later in Section 6.

The rest of the paper is organized as follows. In Section 2,
we formally introduce the concept of hitting time on a bi-
partite graph. In Section 3, we propose the algorithm of
query suggestion using hitting time. We show our experi-
ments and results in Section 4, introduce the related work
in Section 5, and conclude in Section 7.

2. BIPARTITE GRAPH AND HITTING TIME
A bipartite graph is a graph G = (V, E) in which there

exists an partition V = V1 ∪ V2 such that every edge in E
connects a vertex in V1 and one in V2; that is, there is no edge
between two vertices in the same set. Let w : V1 ×V2 → R

+

denote the weight function. Given i ∈ V1 and j ∈ V2, if
there is an edge connecting i and j, then w(i, j) is positive;
otherwise, w(i, j) = 0.

Given a bipartite graph, a random walk can be formed
as follows. Assume the current position is at a vertex in
V1. Then an edge connected to this vertex is chosen with
the probability proportional to the weight of the edge. By
following this edge, the random walk arrives at a vertex in
V2. Then, similarly, an edge connected to V2 is chosen to
follow and the random walk goes back to V1. Given i ∈ V1

and j ∈ V2, the transition probability is defined as

pij =
w(i, j)

di
.

where di =
∑

j∈V2
w(i, j). If one is only interested in the

vertices in one side, such as V1, then a new random walk
based on the above one can be introduced by

pij =
∑

k∈V2

w(i, k)

di

w(k, j)

dk
.

It is easy to check that the stationary probability πi is pro-

portional to di. In what follows, we discuss hitting time on
a graph G = (V, E). All materials are self-contained. For
readers who are familiar with this concept, they can skip
the discussion.

Let A be a subset of V. Let Xt denote the position of the
random walk at discrete time t. The hitting time T A is the
first time that the random walk is at a vertex in A, thus
T A = min{t : Xt ∈ A, t ≥ 0}. It is obvious that T A is a
random variable. From the definition of the hitting time,
given i /∈ A, we immediately have

P [T A = m|X0 = i] =
∑

j∈V

P [X1 = j|X0 = i]

·P [T A = m − 1|X0 = j]

=
∑

j∈V

pijP [TA = m − 1|X0 = j].

The mean hitting time hA
i is the expectation of T A under

the condition X0 = i, that is, hA
i = E[TA|X0 = i]. Thus

hA
i =

∞
∑

m=1

mP [T A = m|X0 = i]

=
∞

∑

m=1

m
∑

j∈V

pijP [T A = m − 1|X0 = j]

=
∑

j∈V

∞
∑

m=1

(m − 1)pijP [T A = m − 1|X0 = j]

+
∑

j∈V

∞
∑

m=1

pijP [T A = m − 1|X0 = j]

Obviously,

∑

j∈V

∞
∑

m=1

(m − 1)pijP [T A = m − 1|X0 = j]

=
∑

j∈V

pij

∞
∑

m=1

mP [T A = m|X0 = j]

=
∑

j∈V

pijh
A
j

For computing the second term, it is necessary to notice that

∞
∑

m=1

P [T A = m − 1|X0 = j] = 1.

Thus,

∑

j∈V

∞
∑

m=1

pijP [T A = m − 1|X0 = j] =
∑

j∈V

pij = 1.

Consequently,

hA
i =

∑

j∈V

pijh
A
j + 1.

In addition, it is obvious that

hA
i = 0, for i ∈ A.

Combining all pieces together, we obtain the linear system
for computing the hitting time:

{

hA
i = 0 for i ∈ A

hA
i =

∑

j /∈A pijh
A
j + 1 for i /∈ A

This linear system has a unique solution. This fact can be
elegantly verified by using Maximum Principle and Unique-
ness Principle in the discrete potential theory.

3. SUGGESTION USING HITTING TIME
Based on the formal definition of hitting time, we now pro-

pose our algorithm of query suggestion using hitting time.

3.1 The Algorithm
Let us begin with a query log dataset, from each record of

which we can extract a pair 〈Query, URL〉. By summarizing
all such pairs, we can construct a bipartite graph G = 〈V, E〉,
where V = V1 ∪ V2. Clearly, V1 corresponds to all queries,
and V2 corresponds to all URLs. Each edge e = (i, j) ∈ E
corresponds to a pair 〈Qi, Uj〉 with positive frequency. We
weight each edge with w(i, j) = C(Qi, Uj), which is the
number of records where this pair appears.

There are also other variations to this setup, e.g., by nor-
malizing the edge weights, constructing a k-Nearest-Neighbor
graph, or using a Query-Query graph, Query-IP graph, etc.
In this section, we use the undirected Query-URL bipartite
graph as a representative case to illustrate our algorithm. A
simple example of such a graph is shown in Figure 1.

T

aa

american airline

mexiana

www.aa.com

www.theaa.com/travelwatch/planner_main.jsp

en.wikipedia.org/wiki/Mexicana

300

15

Query Url

Figure 1: Example of an undirected Query-URL bi-
partite graph

From Figure 1, we see that every query is connected with
a number of URLs, on which the users clicked when sub-
mitting this query to the search engine. The weights on the
edges present how many times the users used this query to
access this URL. Please note that there is no edge connect-
ing two queries, or two URLs.

The labeled query indicates the query for which we want
to generate suggestions. Intuitively, if for all URLs that we
use a query to access, other people exclusively use another
query to access, that query is a good suggestion to the orig-
inal query, e.g., “american airline” to “aa” in Figure 1.

Let QT be the original (target) query. In principle, we
can set A = {QT } and compute the Hitting time hA(i) for
all other queries Qi based on this graph, use this measure
to rank Qis, and select the top-k queries as suggestions to
QT . However, there are two concerns for using the straight-
forward and formal solution we presented in Section 2.

• The graph G can be too large (e.g., 500M queries and
URLs). In fact, most vertices are irrelevant to the orig-
inal query, but they increase the computational cost.

• Solving the linear system can be time consuming. When
the number of variables of the linear system is millions,

it becomes extremely inefficient to get an exact solu-
tion to that linear system.

To overcome these two concerns, we propose the following
efficient algorithm for query suggestion using hitting time:

Algorithm 1 Query Suggestion Using Hitting Time

A bipartite graph G = (V1 ∪ V2, E) consists of query set V1

and URL set V2. There is an edge in E from a query i to an
URL k if this URL is clicked, and the edge is weighted by
the click frequency w(i, k).

1. Given a query s in V1, a subgraph is constructed by us-
ing depth-first search in G. The search stops when the
number of queries is larger than a predefined number
of n queries.

2. Form a random walk on the subgraph by defining tran-
sition probabilities between two queries i and j in V1

as

pij =
∑

k∈V2

w(i, k)

di

w(k, j)

dk
.

3. For all queries except the given one, iterate

hi(t + 1) =
∑

j 6=s

pijhj(t) + 1

for a predefined number of m iterations started with
hi(0) = 0.

4. Let h∗
i be the final value of hi(t). Output the queries

which have the top k smallest h∗
i as suggestions.

A good selection of k would control that the ranking of
top k queries stays stable in future iterations. In Section 4,
we will show that k does not need to be large, which ensures
the efficiency of this algorithm. In some scenarios, a different
initialization of W can be used. For example, one can use
mutual information of a query and a URL instead of the
clickthrough frequency to initialize wij . One can also use
a weighting schema such that wij 6= wji, which naturally
generalizes this method to directed graphes.

Please note that since we are interested in query sugges-
tions, we fold the bipartite graph into a general graph in the
algorithm above. In general, we can easily unfold the graph

in the algorithm, by setting pij = w(i,j)
di

.

3.2 Personalized Query Suggestion
Personalization is desirable for many scenarios where dif-

ferent user has different information need. People in New
York are likely to use “msg” to access the sports center, thus
a suggestion like “madison square garden” is quite useful.
People in other states, on the other hand, may use “msg” to
access the food additive, and a suggestion like “Monosodium
glutamate” is desirable.

There has been quite a few work on personalized search
[11]. However, how to generate personalized query sugges-
tion is still an unsolved problem. [8] presents automatical
query completion with local information, but that method
is based on query morphology and cannot be applied to gen-
erate personalized semantic suggestions.

We now present that our method using hitting time on bi-
partite graph can be easily adapted to generate personalized

query suggestions. Intuitively, when we know the identity of
the user (e.g., his IP address), we should update our knowl-
edge about the information need of this query.

One may say that a simple method is to construct the bi-
partite graph solely based on the history of that user. How-
ever, that could easily fall into the problem of data sparsity.
The simple treatment also loses the opportunity of using
common wisdom. If a user already knows what query to use
(e.g., learning from his history), it is not clear how much
query suggestion could help.

T
aa

american airline

alcoholics

anonymous

www.aa.com

www.theaa.com/travelwatch/planner_main.jsp

www.alcoholics-anonymous.org

Query Url

en.wikipedia.org/wiki/Alcoholics_Anonymous

P

“aa” + user

pseudo query:

Figure 2: Personalized query suggestion

Figure 2 illustrates an intuitive treatment of personalized
query suggestion. Once we know the user, we need to up-
date what we know about the query. This can be viewed as
equivalent to replacing the original query (e.g., “aa”) with
a pseudo query, which is user specified (e.g., “aa” + user).

Once we know the user, we adjust the URLs that he would
click with this query based on the history of this user. Now
the pseudo query connects to some URLs instead of others.
And different suggestions will be generated comparing with
the non-personalized suggestions. In Figure 2, “american
airline” is now a better suggestion than “alcoholics anony-
mous” to “aa” given the user.

The remain problem is how to adjust the weights on the
edges between the pseudo query and the URLs. In principle,
giving the original query QT , in computing the hitting time
we only cares about pij where vj = QT and vi is a URL,
or simply as p(QT |URL). p(QT |URL) is computed with

c(QT ,URL)
∑

Q c(Q,URL)
in Step 2 in the algorithm in Section 3. Simi-

larly, giving the pseudo query QP , we are only interested in
p(QP |URL), or p(QT |Url, User).

A simple computation is

p(QT |URL, User) =
c(QT , URL, User)

∑

Q c(Q, URL, User)
. (1)

However, it could still fall into the problem of data sparsity.
Interestingly, one can notice that many probabilistic person-
alized search algorithms proposed nowadays are essentially
computing p̂(Url|Q, User) [20, 17, 16]. This means that
we can easily adopt any such personalized search algorithm,
and compute

p(QT |Url, User) =
p̂(URL|QT , User)p(QT |User)

p(URL|User)
. (2)

This suggests that without twisting the algorithm struc-
ture or the whole graph, we can easily embed personalization
into query suggestion, by adjusting wij at step 2 in the al-
gorithm in Section 3. Specifically, if vj = QT (the original

query) and vi is a URL, we assign new weights for Wij by

wij =
p(QT |URL, User)

∑

j′ 6=j wij′

1 − p(QT |URL, User)
. (3)

The rest of the algorithm remains the same with the non-
personalized query suggestion.

As a concrete example, if we use the IP address to identify
a user, we can adopt the personalization with backoff model
in [16] and embed in Equation 2 with

p̂(URL|Q, IP) =

4
∑

i=0

λip(URL|Q, IPi). (4)

Here IPi means the first i bytes of IP.
An alternative treatment for personalized query sugges-

tion is to add some related vertices (queries or URLs) into
the target set A based on the user interest. We leave this as
a direction in the future.

4. EXPERIMENTS
In Section 3, we introduced the algorithm of query sugges-

tion using hitting time, and its natural adaptation to per-
sonalized query suggestion. In this section, we use empirical
results to show the effectiveness of the proposed algorithms.

We collect a large scale query log dataset from a commer-
cial search engine of about 1.5 years up to July 2007. This
1.5 years data contains 637 million unique queries, and 585
million unique URLs. We use IP address to identify users
in personalized query suggestion. This dataset contains 193
million unique IP addresses.

To make it easier for others to reproduce our results, we
also collected a publicly available dataset of authors and
titles from DBLP6, as of Feb. 2008. We extract 110k papers
in computer science and around 580k unique authors from
that dataset.

The experiments and results from the two datasets are
presented in the following sections.

4.1 Experiments on Search Log Data

Semantic Query Suggestion
We use the Query-URL bipartite graph extracted from the
18 month data and generate suggestions for all queries. We
selectively show the results in Table 1.

We present the comparison of suggestions generated from
our algorithm and those from Google, Yahoo, and Live.
Clearly, we can see that the suggestions generated with hit-
ting time focus on different aspects than suggestions cur-
rently provided by the three major search engines. Specifi-
cally, there are several major differences:

1. The suggestions generated with our method are more
semantically consistent to the original query.

2. Our method generates suggestions that are morpholog-
ically different, but semantically relevant to the origi-
nal query.

3. Our method generates useful suggestions even for in-
frequent queries. For original queries that are infre-
quent themselves, our method makes reasonable sug-
gestions while the major search engines don’t.

6http://www.informatik.uni-trier.de/∼ley/db/

Table 1: Query suggestions generated using hitting time on Query-URL graph
Query = msg Query = harry shum

HititngTime Google Yahoo Live HittingTime
msg facts msg chinese food msg error Madison Square Garden ce liu
food msg msg health msg network Msg Allergy managing director of-
poisoning of america other names for msg msg seating chart MSN microsoft
msg in fast food msg duty valentine msg Msg Food shum
... msg symptoms foods with msg Monosodium Glutamate microsoft distinguished-
msg network marine security guard yahoo msg Ticketmaster engineers
madison square garden michael schenker verizon text msg Msg Tickets microsoft engineers

Query = friends Query = ranknet
HittingTime Google Yahoo Live HittingTime
wikipedia friends friendship secret friends Find Friend learning to rank
friends tv show wikipedia friends poem friends reunited Friendship ndcg measure ir
friends home page friendster hide friends Friends TV Show ndcg
friends warner bros friends episode guide hi 5 friends Best Friends lambdarank
the friends series friends scripts find friends Secret Friends chris burges
friends official site how to make friends poems for friends Jennifer Aniston pairwise test
friends(1994) true friends friends quotes Friendster rank function

Query = aa Query = long tail
HittingTime Google Yahoo Live HittingTime
alcoholics anonymous aa route planner AA Route Finder wikipedia long tail
automobile association aa route finder AA Route Planner long tail chris anderson
theaa N/A aa airlines AA Airlines long tail wired
american airlines aa meetings American Airlines chris anderson
american air aa autoroute American Airlines full sentence outline-
american airline- aa road map AA Meetings on outsourcing better-

ticket reservations aa 12 shotgun quality at a lower cost

The system generated suggestions for “msg” are compara-
ble with those suggested by the major search engines. Our
method captures the food additive in the suggestions, which
is the most commonly known semantics of msg. We also see
another meaning of msg, madison square garden, ranked
lower in top 10 suggestions. When people use “friends” as
a query instead of “friend,” it usually carries a special se-
mantics (i.e., the Friends TV series). The query suggestions
generated using our system well captured this special se-
mantics, while the major search engines mostly return sug-
gestions about the common sense of friend. Indeed, the
three search engines generate mostly the same suggestions
for “friend” and “friends,” while our system generate quite
different suggestions for “friend,” such as “friend to friend
shelter,” “friend dictionary,” and “web friend.”

From the suggestions for “aa,” we see that our system
not only captures the most common sense, the “american
airline, ” it also successfully boosts infrequent queries as
suggestion (“alcoholics anonymous” and “automobile asso-
ciation”). The major search engines, however, captured the
most common meaning but lost the opportunity of visiting
the long tails.

On the rightmost column of Table 1, we show three exam-
ple queries for which our system generates good suggestions
while the search engines do not. All such queries are “long
tail” queries in search business. We see that using hitting
time on the Query-URL graph, we generate meaningful sug-
gestions even if the suggested terms do not co-occur with
the original query.

For example, the query “ranknet” is a learning-based rank-
ing algorithm used in web IR based on “pairwise tests.”
“learning to rank” is a nice generalization of the query, while
“ndcg” is the key performance measure used in web search,
which such an algorithm tries to optimize. Chris Burges
is one of the inventors of RankNet, and “lambdarank” is
their following work. Such suggestions are all semantically
relevant to the original query.

In another example, “the long tail” is a famous book by
Chris Anderson, the theory of which is well applied in out-
sourcing better quality at a lower cost.

All experiments presented above show that our algorithm
effectively generates semantic consistent query suggestions,
and provides a way of treating and boosting long tail queries.

Personalized Query Suggestion
As discussed in Section 3.2, the algorithm of query sugges-
tion with hitting time can be easily adapted to personalized
query suggestion. As an illustrative example, we use an
IP address to identify a user, and embed the personaliza-
tion with backoff model (Equation 4) in computing Equa-
tion 2. The personalized query suggestion compared with
non-personalized query suggestion are shown in Table 2.

From Table 2, we see that given the IP address of the
user, the system generates quite different query suggestions
than if the IP is unknown. If the query is from Microsoft,
the system will suggest “microsoft research” related queries
for “msr” instead of “mountain safety research,” and “kdd
conference” related queries for “kdd.” “KDDI” is a Japanese
corporation on telephone business which is used to be called
“Kokusai Denshin Denwa (KDD),” and is more interesting
to the common audience. Similar treatments can be found
for the query “msg,” where “madison square garden” related
queries are suggested to people who live near New York.

Another interesting example is the query “football”, which
means American football in the States but usually means
soccer in Europe. When the query is from the United States,
the system suggests American football related concepts, as
well as the “fox nfl”, where “Fox” is a well-known television
network in the States. If the query is from United King-
dom, the systems suggests soccer related concepts, as well
as “bbc”, a broadcasting corporation located in UK.

4.2 Experiments on DBLP Data
Search log data is associated with privacy concerns as well

Table 2: Personalized Query Suggestions using IP Address
Query Non-personalized Personalized Query Non-personalized Personalized

“mountain safety research” microsoft research msg facts madison square garden
msrcorp research food msg madison square gardens

msr mountain safety research what is research msg poisoning of america madison square garden events

msr outdoor research website msg in fast food madison square garden tickets

131.107.*.* msr camp stoves ms research 71.250.*.* what is msg madison square
(Microsoft) msr outdoor equipment university of pittsburgh- (NJ, US) msg food additive madison square garden-

clinical trials new york
msr snowshoes microsoft research- monosodium glutamate madison square garden-

and development box office
msr racing yahoo research labs msg network madison sq garden

Query Non-personalized Personalized Query 169.229.*.* (US) 212.58.*.* (UK)
kidd kdd 2007 cheerleader of the day bbc football
kid (kidd)‡ kdd 2006 terms in football bbc sport football

kdd kddi corporation‡ football nfl franchise football news
sigkdd nfl football fixtures

131.107.*.* kdd international tel.‡ national football league bbc football news
(Microsoft) kddi international- kdd2006 fox nfl bbc soccer

telephone‡ sigkdd2006 football mercato football mercato
kidd group kdd conference 2007 football uk abedi andre dede

* We omit the last two bytes of IP addresses for privacy reason. Corresponding locations of IP are shown in brackets.
‡: Original suggested queries are in Japanese. We present their translations in English.

as Intelligence Property issues, and is usually not accessible
to people outside the search engine companies. To generate
reproducible results for the common audience, we design
similar experiments on a publicly available dataset, DBLP.

Query Suggestion on Coauthor Graph
The most commonly explored graph on the bibliography
data is the coauthor graph. In this experiment, we con-
structed a coauthor graph from the DBLP data, by making
a vertex for every author, and an edge between two authors
if they coauthored in a paper. The weight on each edge cor-
responds to how many papers that the two researchers have
coauthored.

The method of query suggestion using hitting time is gen-
eralized, and can be applied on both bipartite graph, or a
general graph (e.g., a query-query graph). Indeed, with the
notion introduced in Section 2, we can fold a bipartite graph
into a graph with only one group of vertices, but with a dif-
ferent weighing function for the folded edges. We use such
a coauthor graph to demonstrate that our algorithm can
generate interesting suggestions with a general coocurrence
graph.

In Table 3, we present the suggestions generated based
on computing the hitting time on the coauthor graph. The
middle three columns presents the suggestions based on the
hitting time computation. By default, for each author name
query (shown in column 1), we construct the subgraph by
including all authors that are less or equal to distance 6 to
the target author. The six degrees of separation 7 is well
known in social network analysis that the average distance
of a vertex to all others is around 6. Indeed, such a subgraph
usually contains 410∼450k authors, which covers more than
70% of the entire graph. We vary the number of iterations
and the size of the subgraph to show the robustness of our
method.

From Column 3 through 5, we see that our system tends
to suggest authors that collaborate intensively with the tar-
get query (e.g., students of a professor, and collaborators
who works exclusively with the author). It is interesting to

7http://en.wikipedia.org/wiki/Six degrees of separation

see that the system suggests “Lawrence Page” for “Sergey
Brin”. When we use 10 iterations for our algorithm in Sec-
tion 3, it already achieves similar ranking to the exact solu-
tion, which we get from solving the linear system completely.

Can we use a smaller subgraph? We present the experi-
ments on smaller subgraphs, where all authors are at most
2 steps away from the original author query. From the 4th

column of Table 3, we see that a smaller graph captures
most of the values of the larger one in terms of query sug-
gestion. This experiment shows that without much loss of
performance, the algorithm of query suggestion using hitting
time can be made more efficient by using a smaller subgraph
(∼1000 vertices) and a few iterations.

Since our work is also based on a random walk on a large
scale graph, it is interesting to show how different are our
results from other random walk methods. For example, per-
sonalized PageRank [11] is a method that is usually used to
rank vertices on the graph in a query dependant way. The
corresponding linear system of personalized PageRank can
be shown as:

Ri = (1 − s)R
(0)
i + s ·

∑

j

pjiR
(0)
j . (5)

where R
(0)
i is a personalized (or query dependent) initial

values for vertex i. We may set R
(0)
i = 1 if vi = QT and

0 otherwise. It is easy to show that if s = 1, R will be
the stationary distribution of random walking on the graph,
which is proportional to the degree of vertices. We expect
that personalized PageRank would still favor authors who
published a lot of papers and have a lot of coauthors.

We present the query suggestions ranked by personal-
ized PageRank in the rightmost column in Table 3. We
also present the nearest neighbors of QT (i.e., vj ’s with the
largest w(QT , j)).

We see that personalized PageRank generates quite dif-
ferent suggestions to hitting time. It indeed favors authors
with higher degrees, e.g., “Andrew Tomkins” and “Sridhar
Rajagopalan” for “Jon M. Kleinberg,” and “Monika R. Hen-
zinger” for “Sergey Brin.” In fact, we can see that using
personalized PageRank does not gain much different top-k

Table 3: Author suggestions generated using hitting time on coauthor graph
Query Nearest Neighbors Iteration = 10 Exact Solution SmallGraph (d=2) Personalized PgRank

Prabhakar Raghavan Aleksandrs Slivkins Aleksandrs Slivkins Mark Sandler Prabhakar Raghavan

Éva Tardos Mark Sandler Mark Sandler Samer A. Abdallah Éva Tardos
Daniel P. Huttenlocher Tom Wexler Tom Wexler Christophe Rhodes Daniel P. Huttenlocher

Jon M. David Kempe Lars Backstrom Lars Backstrom Michael Casey David Kempe
Kleinberg Amit Kumar Elliot Anshelevich Xiangyang Lan Aleksandrs Slivkins Andrew Tomkins

Andrew Tomkins Xiangyang Lan Elliot Anshelevich Xiangyang Lan Amit Kumar
Christos H. Papadimitriou Daniel P. Huttenlocher Daniel P. Huttenlocher Lars Backstrom Sridhar Rajagopalan

Query Nearest Neighbors Iteration = 10 Exact Solution SmallGraph (d=2) Personalized PgRank
Rajeev Motwani Lawrence Page Lawrence Page Lawrence Page Rajeev Motwani
Craig Silverstein Craig Silverstein Craig Silverstein Craig Silverstein Craig Silverstein
Jeffrey D. Ullman Brian Milch Brian Milch Brian Milch Jeffrey D. Ullman

Sergey Bay-Wei Chang Bay-Wei Chang Bay-Wei Chang Bay-Wei Chang Monika R. Henzinger

Brin Brian Milch Hannes Marais Hannes Marais Andrey Kolobov Rajeev Rastogi
Kyuseok Shim Andrey Kolobov Andrey Kolobov Daniel L. Ong Brian Milch
Lawrence Page Daniel L. Ong Daniel L. Ong David Sontag Bay-Wei Chang
Monika R. Henzinger Monika R. Henzinger David Sontag Polle Zellweger Kyuseok Shim

We only include authors with a degree larger than 5. Dumping parameter used in Personalized PageRank: 0.5.

suggestions compared with using just the k nearest neigh-
bors. Although “big” authors are more visible, putting them
in the query suggestions blocks the “smaller” authors to be
seen, and also causes a topic drift. One could imagine that
when a user want to find a Ph.D student whose name he
couldn’t remember, he is likely to begin with searching his
advisor (and a query suggestion of his students would be
very helpful). On the other hand, there are way many better
directions to find a “big” name than beginning with another
“big” name. Please note that our method does not have a
model parameter to tune.

The experiments above suggest that our proposed method
applies well on query-query graphs, generates better sugges-
tions than other random walk method, and can be made
quite efficient.

Query Suggestion on Author-Keyword Bipartite Graph
We then constructed a bipartite graph from the bibliography
data by segmenting the titles of every paper into all unigram
and bigram words it contains. We made a vertex for every
author and every keyword. We then connected an author
and a keyword with an edge if the author used that keyword.
The weight on each edge corresponds to the frequency that
the user used that keyword. We removed the stop words
from the title, and no domain knowledge has been applied.

In this way, we get a bipartite graph G = (V, E). V =
V1∪V2 where V1 are the set of all authors and V2 is the set of
all unigram and bigram title terms. As a result, this provides
us a bipartite graph of 1.6M vertices, in which around 1M
vertices are unigram and bigram keywords. We then sim-
ulate that a user would type a keyword (either a unigram
or a bigram) as a query, and use our proposed algorithm
to generate suggestions to the keyword query. The sample
results are presented in Table 4.

It can be easily discovered from Table 4 that our sys-
tem generates very reasonable suggestions to those keyword
queries. All suggestions for the six given queries are seman-
tically close the original query.

Another interesting question on the DBLP data is whether
we can suggest keywords for a query of author. Indeed, we
can apply our algorithm by computing the hitting time from
every keywords to the original query (an author). We then
select the top ranked keywords as keyword suggestions for an
author query. The results are selectively shown in Table 5.

Presumably, the suggestion keywords should well capture
the semantics of the author, or the research topics that the
author mostly works on. We first present the k nearest
neighbor keywords of each author in the Author-Keyword
bipartite graph. For both queries, we see that all such near-
est neighbor terms are too broad. They tend to be too gen-
eral to capture the author’s specific research topics. We also
used personalized PageRank to generate suggestions (as in
column 4), but unfortunately it still improves tiny over the k
nearest neighbors. From the column 3 of Table 5, however,
we clearly see that we get much better suggestions using
hitting time. Indeed, the suggestions generated are general
enough to convey coherence meanings, and also tight enough
to represent the special interest of the author query. Inter-
estingly, because we segment unigrams and bigrams in a to-
tally unsupervised way, a huge number of bigrams are non-
meaningful segments, such as “based approach,” “guided
mining,” and “clusters among,” the suggested bigrams us-
ing hitting time are all meaningful phrases.

In this Section, we use experiments on two different datasets
to show that query suggestion using hitting time is effective
to generate semantically consistent query suggestions, long
tail suggestions, as well as personalized suggestions.

5. RELATED WORK
Query suggestion has been a well-accepted utility used by

many search engines to help user explore and express their
information need. While there are quite a few work on gener-
ating different types of query suggestions, such as query auto
completion [7, 8], query spelling correction [10, 15], query
expansion [21, 22, 3], and query rewriting [1, 13]. While
most early query suggestion methods explore document in-
formation, query log data has been widely used recently.

Query frequency [15, 7, 8], term coocurrence [4, 13, 19],
query clickthrough [12, 23, 9, 18], and query chains [17] are
among the most used types of information in query log. In
this paper, we adopt the query clickthrough information, but
the proposed method of query suggestion using hitting time
does not rely on such information. Indeed, our algorithm
can be applied with all such types of information, as long
as an undirected graph of queries, or a bipartite graph of
queries and other types of entities, can be constructed.

There are different ranking methods proposed using ran-

Table 4: Keyword suggestions generated from Keyword-Author graph using hitting time
Query Suggestions Query Suggestions Query Suggestions

dimension updates pagerank computation clickthrough data
olap data ranking systems page classification
olap cubes pagerank approximation query classification

olap olap queries pagerank peer web clickthrough implicit feedback
view size incremental computations recommending
range top web spam optimizing web
hierarchical clustered iterative computation based smoothing

Query Suggestions Query Suggestions Query Suggestions
amazon walk knowledge collaboration
dynamic collaborative timing recovery community structure
recommendation algorithms rao bound resource organization

collaborative re ranking random walk hyperlink analysis social networks information kiosks
filtering item based stabilizing group efficient searching

design recommender based scoring exploit social
demographics between nodes network extraction

* We omit keywords that has a degree less than 10.

Table 5: Generating keyword suggestions to author queries in DBLP
Query kNN-keywords Hitting Time Suggestions Personalized PgRank

mining large databases mining
data frequent pattern data
frequent sequential pattern based

Jiawei Han based frequent patterns efficient
efficient pattern mining frequent
pattern frequent pattern
data mining multi dimensional data mining

Query kNN-keywords Hitting Time Suggestions Personalized PgRank
learning dirichlet process learning
statistical approximate inference based
kernel dirichlet statistical

Michael I. Jordan markov mean field model
inference supervised learning kernel
model graphic models markov
bayesian mixture bayesian

* We omit keywords that has a degree less than 10.

dom walk on a Query-URL graph. PageRank [5] is basi-
cally computing the stationary distribution of a smoothed
Markov chain. Personalized PageRank generalizes PageR-
ank by smoothing the Markov chain with a user (or query)
specific jumping probability vector instead of a uniform vec-
tor, thus is often used for query-dependent ranking [11].
HITS [14] is an alternative query-dependent ranking algo-
rithm which computes two different scores (hub and author-
ity) in an alternating way. [9] proposed a ranking function
which is basically computing the n-step transition probabil-
ity from the original vertex to the target.

However, all such methods are essentially computing “how
much weights can be distributed to a vertex from its neigh-
bors”. This ends up with favoring vertices with large degree
and usually results in topic drift. Indeed, topic drift has been
a well discussed problem of HITS [6]. Instead, our algorithm
computes “how soon can I reach the original query if I be-
gin at a suggestion, with an average of all possible paths”.
This guarantees that the semantics of the top ranked sugges-
tion will be coherent with the original query. Unlike other
random walk methods, it also boosts infrequent queries. An-
other advantage of the hitting time is that it does not have
a parameter to tune, while all the self-jump based methods
(e.g., PageRank, personalized PageRank, and n-step transi-
tion) all has one or more critical parameters to tune.

In terms of updating the original query, our work is also
relevant to feedback [24, 20, 17] in information retrieval.
However, both pseudo-feedback and implicit-feedback could

easily add in irrelevant terms into the query, especially when
the feedback documents has a rich content. Our method
utilizes the common wisdom and control the relevance of
suggested queries.

6. DISCUSSION
As a ranking function on a graph, hitting time is gen-

eral and does not rely on the specific type of graphs. We
illustrated its power by generating query suggestions from a
Query-URL bipartite graph, but there are many other pos-
sibilities. On the other hand, the Query-URL relation (i.e.,
clickthrough) is not the only information conveyed in a large
scale search log. Indeed, one can extract Query-IP graphs,
Query-Query relations considering session information, etc.

Ranking search-related entities on a graph using hitting
time can be regarded as a general treatment of a lot of inter-
esting problem. For example, ranking URLs given a query
(by computing hA(URL → Q)) suggests a method of rank-
ing web pages without looking at their content. hA(URL →
URL) leads to finding similar pages, hA(Q → URL) sug-
gests search terms for a webpage, and hA(IP → IP) pro-
vides a way to find people who have similar interests like
you. All these are interesting directions to apply the method
proposed in this paper.

There are many interesting future directions to this work.
A real query suggestion system should balance many differ-
ent features. It is interesting to embed our method as a new
feature into a real query suggestion system, and quantita-

tively evaluate how much our method can benefit the current
system. Another possible future work is to apply the gen-
eral algorithm on other types of graphs, for example graphs
built from query-session data, query-user graphs, as well as
directed graphs. It will then be interesting to generate query
suggestions using multiple types of graphs.

7. CONCLUSION
In this paper, we proposed a novel query suggestion ap-

proach based on the computation of hitting time on large
scale bipartite graphs. Unlike existing query suggestion meth-
ods, our proposed method controls the semantic consistency
of the suggestions to the original query. The proposed method
has several advantages over existing methods: 1) the gener-
ated suggestions are semantically consistent to the original
query; 2) the method boosts long tail queries as suggestion,
and also generates suggestions for long tail queries despite of
sparsity of data; 3) the method extracts suggestions that did
not cooccur with original query; and 4) our method can be
generalized to personalized query suggestion by simply em-
bedding in any probabilistic personalized search methods.
Experiments show that our method effectively generates se-
mantic query suggestions as well as personalized query sug-
gestions. The hitting time based method does not have a
model parameter to tune, and can be easily transformed as
a feature in existing query suggestion systems.

8. REFERENCES
[1] E. Agichtein, S. Lawrence, and L. Gravano. Learning

search engine specific query transformations for
question answering. In Proceedings of the 10th

international conference on World Wide Web, pages
169–178, 2001.

[2] C. Anderson. The Long Tail: Why the Future of

Business is Selling Less of More. Hyperion, 2006.

[3] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Query recommendation using query logs in search
engines. In EDBT Workshops, pages 588–596, 2004.

[4] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proceedings of KDD

’00, pages 407–416, 2000.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Comput. Netw. ISDN

Syst., 30(1-7):107–117, 1998.

[6] S. Chakrabarti, M. Joshi, and V. Tawde. Enhanced
topic distillation using text, markup tags, and
hyperlinks. In Proceedings of the 24th annual

international ACM SIGIR conference on Research and

development in information retrieval, pages 208–216,
2001.

[7] K. Church and B. Thiesson. The wild thing! In
Proceedings of the ACL 2005 on Interactive poster and

demonstration sessions, pages 93–96, 2005.

[8] K. W. Church and B. Thiesson. The wild thing goes
local. In Proceedings of the 30th annual international

ACM SIGIR conference on Research and development

in information retrieval, pages 901–901, 2007.
[9] N. Craswell and M. Szummer. Random walks on the

click graph. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and

development in information retrieval, pages 239–246,
2007.

[10] S. Cucerzan and E. Brill. Spelling correction as an
iterative process that exploits the collective knowledge
of web users. In Proceedings of EMNLP 2004, pages
293–300, 2004.

[11] T. Haveliwala, S. Kamvar, and G. Jeh. An analytical
comparison of approaches to personalizing pagerank,
2003.

[12] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In Proceedings of the 28th annual

international ACM SIGIR conference on Research and

development in information retrieval, pages 154–161,
2005.

[13] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of the

15th international conference on World Wide Web,
pages 387–396, 2006.

[14] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632.

[15] M. Li, Y. Zhang, M. Zhu, and M. Zhou. Exploring
distributional similarity based models for query
spelling correction. In Proceedings of the 21st

International Conference on Computational

Linguistics and the 44th annual meeting of the ACL,
pages 1025–1032, 2006.

[16] Q. Mei and K. Church. Entropy of search logs: how
hard is search? with personalization? with backoff? In
Proceedings of the international conference on Web

search and web data mining, pages 45–54, 2008.

[17] F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. In Proceedings of the

eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pages 239–248,
2005.

[18] F. Radlinski and T. Joachims. Active exploration for
learning rankings from clickthrough data. In
Proceedings of KDD’ 07, pages 570–579, 2007.

[19] D. Shen, T. Walkery, Z. Zhengy, Q. Yangz, and Y. Li.
Personal name classification in web queries. In
Proceedings of the international conference on Web

search and web data mining, pages 149–158, 2008.

[20] X. Shen, B. Tan, and C. Zhai. Implicit user modeling
for personalized search. In Proceedings of CIKM’ 05,
pages 824–831, 2005.

[21] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user
queries of a search engine. In Proceedings of WWW

’01, pages 162–168, 2001.

[22] R. W. White and G. Marchionini. Examining the
effectiveness of real-time query expansion. Inf.

Process. Manage., 43(3):685–704, 2007.

[23] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma,
W. Xi, and W. Fan. Optimizing web search using web
click-through data. In Proceedings of CIKM ’04, pages
118–126, 2004.

[24] C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval.
In Proceedings of CIKM’ 01, pages 403–410, 2001.

